While societal events often impact people worldwide, a significant fraction of events has a local focus that primarily affects specific language communities. Examples include national elections, the development of the Coronavirus pandemic in different countries, and local film festivals such as the C\'esar Awards in France and the Moscow International Film Festival in Russia. However, existing entity recommendation approaches do not sufficiently address the language context of recommendation. This article introduces the novel task of language-specific event recommendation, which aims to recommend events relevant to the user query in the language-specific context. This task can support essential information retrieval activities, including web navigation and exploratory search, considering the language context of user information needs. We propose LaSER, a novel approach toward language-specific event recommendation. LaSER blends the language-specific latent representations (embeddings) of entities and events and spatio-temporal event features in a learning to rank model. This model is trained on publicly available Wikipedia Clickstream data. The results of our user study demonstrate that LaSER outperforms state-of-the-art recommendation baselines by up to 33 percentage points in MAP@5 concerning the language-specific relevance of recommended events.
翻译:虽然社会活动往往影响到全世界人民,但很大一部分活动都以当地为重点,主要影响到特定语言社区,例如全国选举、不同国家发展科罗纳病毒流行病以及法国C/esar奖和俄罗斯莫斯科国际电影节等地方电影节,但是,现有的实体建议办法不足以解决建议的语言背景问题。本文章介绍了语言特定活动建议的新任务,其目的是就特定语言背景下与用户查询相关的活动提出建议。这一任务可以支持基本的信息检索活动,包括网络导航和探索搜索,同时考虑到用户信息需要的语言背景。我们提议LASER,这是针对语言特定活动建议的新办法。LASER将实体和事件的具体语言潜在代表(组合)和Spatio-时空事件特点混在一起,用于学习等级模型。这一模式是就公众可获得的维基百科点击流数据进行培训。我们的用户研究结果表明,LASER超越了最新的建议基线,在MAP@5中最多达33个百分点,以适应所建议的活动的语言特定语言的相关性。</s>