Automated shape repair approaches currently lack access to datasets that describe real-world damaged geometry. We present Fantastic Breaks (and Where to Find Them: https://terascale-all-sensing-research-studio.github.io/FantasticBreaks), a dataset containing scanned, waterproofed, and cleaned 3D meshes for 150 broken objects, paired and geometrically aligned with complete counterparts. Fantastic Breaks contains class and material labels, proxy repair parts that join to broken meshes to generate complete meshes, and manually annotated fracture boundaries. Through a detailed analysis of fracture geometry, we reveal differences between Fantastic Breaks and synthetic fracture datasets generated using geometric and physics-based methods. We show experimental shape repair evaluation with Fantastic Breaks using multiple learning-based approaches pre-trained with synthetic datasets and re-trained with subset of Fantastic Breaks.
翻译:自动化形状修复方法目前缺乏描述真实的世界受损几何的数据集。我们提出了Fantastic Breaks (以及我们的数据集链接:https://terascale-all-sensing-research-studio.github.io/FantasticBreaks),这是一个包含150个破损物品的扫描、防水和清洁的三维网格数据集,它们与完整对应物几何地配对。Fantastic Breaks包含设备和材料标签,代理修复部件,可以将它们应用在破碎的网格上,以生成完整的网格,并且还手动注释了裂纹边界。通过详细分析破裂几何,我们揭示了Fantastic Breaks和基于几何和基于物理方法生成的合成破损数据集之间的差异。我们展示了使用Fantastic Breaks进行实验形状修复评估的多个基于学习的方法,这些方法使用基于合成数据集的预训练,并使用Fantastic Breaks数据集子集进行重新训练。