This work presents a nonintrusive physics-preserving method to learn reduced-order models (ROMs) of Lagrangian systems, which includes nonlinear wave equations. Existing intrusive projection-based model reduction approaches construct structure-preserving Lagrangian ROMs by projecting the Euler-Lagrange equations of the full-order model (FOM) onto a linear subspace. This Galerkin projection step requires complete knowledge about the Lagrangian operators in the FOM and full access to manipulate the computer code. In contrast, the proposed Lagrangian operator inference approach embeds the mechanics into the operator inference framework to develop a data-driven model reduction method that preserves the underlying Lagrangian structure. The proposed approach exploits knowledge of the governing equations (but not their discretization) to define the form and parametrization of a Lagrangian ROM which can then be learned from projected snapshot data. The method does not require access to FOM operators or computer code. The numerical results demonstrate Lagrangian operator inference on an Euler-Bernoulli beam model, the sine-Gordon (nonlinear) wave equation, and a large-scale discretization of a soft robot fishtail with 779,232 degrees of freedom. Accurate long-time predictions of the learned Lagrangian ROMs far outside the training time interval illustrate their generalizability.
翻译:这项工作提出了一种非侵扰性物理保存方法,以学习Lagrangian系统(包括非线性波方程)的减序模型(ROMs),其中包括非线性波方程式。现有的侵入性投影模型削减方法通过将全序模型(FOM)的Euler-Lagrange方程式投射到线性子空间来构建结构保护Lagrangian的ROMs。Galerkin投影步骤要求完全了解FOM的Lagrangian操作员,并充分使用计算机代码。相比之下,拟议的Lagranangian操作员推断方法将机械技术嵌入操作员的推导框架,以开发一种数据驱动的减少模型方法,以维护Lagrangian结构的基本结构。拟议方法利用对全序模型(但不是其离散化)的知识来定义Lagrangian ROM的窗体和准度,然后可以从预测的光光数据中学习。该方法不需要访问FOM操作员或计算机代码。数字结果显示Lagrangian操作员在Eul-Bernlixal2 软性离心级的离心型软性离心型软性软性软磁度模型的离心级模型模型的离心型模型模型模型。