Radiation transport problems are posed in a high-dimensional phase space, limiting the use of finely resolved numerical simulations. An emerging tool to efficiently reduce computational costs and memory footprint in such settings is dynamical low-rank approximation (DLRA). Despite its efficiency, numerical methods for DLRA need to be carefully constructed to guarantee stability while preserving crucial properties of the original problem. Important physical effects that one likes to preserve with DLRA include capturing the diffusion limit in the high-scattering regimes as well as dissipating energy. In this work we propose and analyze a dynamical low-rank method based on the "unconventional" basis-update & Galerkin step integrator. We show that this method is asymptotic-preserving, i.e., it captures the diffusion limit, and energy stable under a CFL condition. The derived CFL condition captures the transition from the hyperbolic to the parabolic regime when approaching the diffusion limit.
翻译:辐射传输问题存在于高维阶段空间,限制了精确解决的数字模拟的使用。在这种环境中有效降低计算成本和记忆足迹的一个新兴工具是动态低级近似(DLA) 。尽管它的效率很高,但DLA的数字方法需要谨慎构建,以保证稳定性,同时保留原始问题的关键特性。人们喜欢与DLA一起保存的重要物理效应包括捕捉高振荡机制中的扩散极限以及消散能量。在这项工作中,我们提议并分析一种动态低级方法,该方法基于“非常规”基础更新和加列尔金步骤集成器。我们表明,这种方法是静态保存,也就是说,它捕捉到扩散极限,在CFL条件下的能量稳定。衍生的CFL条件在接近扩散极限时捕捉了从双曲向抛物制的过渡。