In this paper, we focus on facilitating differentially private quantized communication between the clients and server in federated learning (FL). Towards this end, we propose to have the clients send a \textit{private quantized} version of only the \textit{unit vector} along the change in their local parameters to the server, \textit{completely throwing away the magnitude information}. We call this algorithm \texttt{DP-NormFedAvg} and show that it has the same order-wise convergence rate as \texttt{FedAvg} on smooth quasar-convex functions (an important class of non-convex functions for modeling optimization of deep neural networks), thereby establishing that discarding the magnitude information is not detrimental from an optimization point of view. We also introduce QTDL, a new differentially private quantization mechanism for unit-norm vectors, which we use in \texttt{DP-NormFedAvg}. QTDL employs \textit{discrete} noise having a Laplacian-like distribution on a \textit{finite support} to provide privacy. We show that under a growth-condition assumption on the per-sample client losses, the extra per-coordinate communication cost in each round incurred due to privacy by our method is $\mathcal{O}(1)$ with respect to the model dimension, which is an improvement over prior work. Finally, we show the efficacy of our proposed method with experiments on fully-connected neural networks trained on CIFAR-10 and Fashion-MNIST.


翻译:在本文中, 我们侧重于促进客户和服务器在联合学习中进行有区别的私人量化通信 。 为此, 我们建议客户在本地参数变化的同时, 向服务器发送一个只有\ textit{ unit矢量的版本,\ textit{ unit矢量 。 我们称此算法为\ textt{ DP- NormFedAvg}, 并显示它在平滑的 夸撒- 康韦克斯 功能上有着与\ textt{ FedAvg} 相同的顺序顺序趋同率。 为此, 我们建议客户在平坦的 类非convex 函数中发送一个\ textitle{ compal 量的版本, 从而确定放弃数量信息不会因最优化点而受到损害 。 我们还引入了 QTDL, 一种对单位- 北调矢量矢量的新的有差别的私人量化机制, 我们在\ t{ DP- NormFedAvg} 显示, QTDL 使用一个在平流- trueal real real respal respal respal resmal- sal rolation rolation rolation rolation rolationslationslationslupl) 。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员