Precipitation forecasting is an important scientific challenge that has wide-reaching impacts on society. Historically, this challenge has been tackled using numerical weather prediction (NWP) models, grounded on physics-based simulations. Recently, many works have proposed an alternative approach, using end-to-end deep learning (DL) models to replace physics-based NWP. While these DL methods show improved performance and computational efficiency, they exhibit limitations in long-term forecasting and lack the explainability of NWP models. In this work, we present a hybrid NWP-DL workflow to fill the gap between standalone NWP and DL approaches. Under this workflow, the NWP output is fed into a deep model, which post-processes the data to yield a refined precipitation forecast. The deep model is trained with supervision, using Automatic Weather Station (AWS) observations as ground-truth labels. This can achieve the best of both worlds, and can even benefit from future improvements in NWP technology. To facilitate study in this direction, we present a novel dataset focused on the Korean Peninsula, termed KoMet (Korea Meteorological Dataset), comprised of NWP predictions and AWS observations. For NWP, we use the Global Data Assimilation and Prediction Systems-Korea Integrated Model (GDAPS-KIM).
翻译:降水预测是一个重要的科学挑战,对社会具有广泛影响。历史上,这一挑战是通过数字天气预测(NWP)模型和基于物理的模拟模型来应对的。最近,许多著作提出了替代方法,利用端到端深学习模型取代基于物理的NWP。虽然这些DL方法显示业绩和计算效率的提高,但它们在长期预测方面表现出局限性,缺乏NWP模型的可解释性。在这项工作中,我们提出了一个混合的NWP-DL工作流程,以填补独立的NWP和DL方法之间的差距。在这个工作流程下,NWP产出被注入一个深层模型,用于处理数据后产生改良的降水预报。深层模型经过监督培训,使用自动气象站的观测作为地面图象标签。这可以实现两个世界的最佳条件,甚至从未来NWP技术的改进中受益。为了便利这方面的研究,我们提出了一个新的数据集,以朝鲜半岛为重点,称为KoMet(Korea Mimi-KSDAS), 包括全球数据预测和NWPSIS的模型。