This paper studies treatment effect estimation in a novel two-stage model of experimentation. In the first stage, using baseline covariates, the researcher selects units to participate in the experiment from a sample of eligible units. Next, they assign each selected unit to one of two treatment arms. We relate estimator efficiency to representative selection of participants and balanced assignment of treatments. We define a new family of local randomization procedures, which can be used for both selection and assignment. This family nests stratified block randomization and matched pairs, the most commonly used designs in practice in development economics, but also produces many useful new designs, embedding them in a unified framework. When used to select representative units into the experiment, local randomization boosts effective sample size, making estimators behave as if they were estimated using a larger experiment. When used for treatment assignment, local randomization does model-free non-parametric regression adjustment by design. We give novel asymptotically exact inference methods for locally randomized selection and assignment, allowing experimenters to report smaller confidence intervals if they designed a representative experiment. We apply our methods to the setting of two-wave design, where the researcher has access to a pilot study when designing the main experiment. We use local randomization methods to give the first fully efficient solution to this problem.


翻译:本文在一个新的两阶段实验模型中研究处理效果估计。 在第一阶段, 研究人员使用基线共变模型, 从合格单位样本中选择单位参加实验。 下一步, 他们将每个选定单位指派给两个处理器中的一个。 我们把估计效率与代表参与者的挑选和均衡的治疗分配联系起来。 我们定义了本地随机化程序的新组合, 可用于选择和分配。 这个家庭巢可以使用本地随机化程序, 用于本地随机化和匹配对配对, 这是发展经济学实践中最常用的设计, 但也产生许多有用的新设计, 将其嵌入一个统一的框架。 当用于选择具有代表性的单位时, 本地随机化会提高样本的有效大小, 使估计者的行为表现为使用更大的实验。 当用于治疗分配时, 本地随机化可以进行无模式的无参数回归调整。 我们给本地随机化选择和匹配的选择方法, 允许实验者在设计具有代表性的实验时报告更小的信任间隔。 我们运用了我们的方法, 在设计两种实验方法时, 使本地的实验方法 完全使用。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员