Because of its wide application, critical nodes identification has become an important research topic at the micro level of network science. Influence maximization is one of the main problems in critical nodes mining and is usually handled with heuristics. In this paper, a deep graph learning framework IMGNN is proposed and the corresponding training sample generation scheme is designed. The framework takes centralities of nodes in a network as input and the probability that nodes in the optimal initial spreaders as output. By training on a large number of small synthetic networks, IMGNN is more efficient than human-based heuristics in minimizing the size of initial spreaders under the fixed infection scale. The experimental results on one synthetic and five real networks show that, compared with traditional non-iterative node ranking algorithms, IMGNN has the smallest proportion of initial spreaders under different infection probabilities when the final infection scale is fixed. And the reordered version of IMGNN outperforms all the latest critical nodes mining algorithms.
翻译:由于其广泛应用,关键的节点识别已成为网络科学微观一级的一个重要研究课题; 影响最大化是关键节点采矿的主要问题之一,通常由超自然学处理; 本文提出一个深图学习框架IMGNN, 并设计相应的培训样本生成计划; 该框架将网络中的节点中心作为投入, 并将最佳初始传播器中的节点作为输出的概率。 通过对大量小型合成网络进行培训,IMGNN在尽量减少固定感染规模下初始传播器的规模方面比基于人类的超常性效率要高。 一个合成网络和五个实际网络的实验结果显示,与传统的非典型节点排序算法相比,IMGNN在最后感染规模固定时,初始传播器在不同的感染概率下的比例最小。 重新排序的IMGNN的版本超越了所有最新的关键节点采矿算法。