This paper studies the inference of the regression coefficient matrix under multivariate response linear regressions in the presence of hidden variables. A novel procedure for constructing confidence intervals of entries of the coefficient matrix is proposed. Our method first utilizes the multivariate nature of the responses by estimating and adjusting the hidden effect to construct an initial estimator of the coefficient matrix. By further deploying a low-dimensional projection procedure to reduce the bias introduced by the regularization in the previous step, a refined estimator is proposed and shown to be asymptotically normal. The asymptotic variance of the resulting estimator is derived with closed-form expression and can be consistently estimated. In addition, we propose a testing procedure for the existence of hidden effects and provide its theoretical justification. Both our procedures and their analyses are valid even when the feature dimension and the number of responses exceed the sample size. Our results are further backed up via extensive simulations and a real data analysis.
翻译:本文研究了在隐藏变量的情况下,在多变反应线性回归下回归系数矩阵的推论。提出了在系数矩阵条目中构建信任间隔的新程序。我们的方法首先通过估计和调整隐藏效应,利用反应的多变性质来构建系数矩阵的初步估计器。通过进一步采用低维预测程序来减少前一步正规化带来的偏差,建议了一个精细的估测器,并显示其微乎其微的正常性。由此得出的估计器的无常性差异是用封闭式表达式来推导的,并且可以不断估算。此外,我们建议对隐藏效应的存在采用测试程序,并提供理论上的理由。我们的程序及其分析都是有效的,即使特性和答复的数量超过抽样规模。我们的结果通过广泛的模拟和真实的数据分析得到进一步支持。