Parameters of the covariance kernel of a Gaussian process model often need to be estimated from the data generated by an unknown Gaussian process. We consider fixed-domain asymptotics of the maximum likelihood estimator of the scale parameter under smoothness misspecification. If the covariance kernel of the data-generating process has smoothness $\nu_0$ but that of the model has smoothness $\nu \geq \nu_0$, we prove that the expectation of the maximum likelihood estimator is of the order $N^{2(\nu-\nu_0)/d}$ if the $N$ observation points are quasi-uniform in $[0, 1]^d$. This indicates that maximum likelihood estimation of the scale parameter alone is sufficient to guarantee the correct rate of decay of the conditional variance. We also discuss a connection the expected maximum likelihood estimator has to Driscoll's theorem on sample path properties of Gaussian processes. The proofs are based on reproducing kernel Hilbert space techniques and worst-case case rates for approximation in Sobolev spaces.
翻译:Gaussian 进程模型的共变内核参数往往需要从未知的 Gaussian 进程生成的数据中估算出来。 我们考虑平滑性差分下比例参数最大概率估测值的固定域空格。 如果数据生成过程的共变内核是平滑的, $\ nu_ 0美元, 但模型的共变内核是平滑的, $\ nu\ geq\ nu_ 0美元, 我们证明, 如果$00的观测点在 $[10, 1] / d} 美元中是准一致的, 则对最大可能性估计。 这表明仅对比值参数的最大概率估计就足以保证条件差异的准确衰变率。 我们还讨论预期的最大概率估计值与 Driscoll 的样本路径特性的星体质属性之间的关联。 证据的依据是复制Kilbert 空间技术的再生内核, 以及 Sobo 近距离 中最差的案率。