One central goal of design of observational studies is to embed non-experimental data into an approximate randomized controlled trial using statistical matching. Researchers then make the randomization assumption in their downstream, outcome analysis. For matched pair design, the randomization assumption states that the treatment assignment across all matched pairs are independent, and that the probability of the first subject in each pair receiving treatment and the other control is the same as the first receiving control and the other treatment. In this article, we develop a novel framework for testing the randomization assumption based on solving a clustering problem with side-information using modern statistical learning tools. Our testing framework is nonparametric, finite-sample exact, and distinct from previous proposals in that it can be used to test a relaxed version of the randomization assumption called the biased randomization assumption. One important by-product of our testing framework is a quantity called residual sensitivity value (RSV), which quantifies the level of minimal residual confounding due to observed covariates not being well matched. We advocate taking into account RSV in the downstream primary analysis. The proposed methodology is illustrated by re-examining a famous observational study concerning the effect of right heart catheterization (RHC) in the initial care of critically ill patients.


翻译:设计观察研究的一个中心目标是利用统计匹配,将非实验性数据嵌入一个近似随机控制的试验中。研究人员然后在下游结果分析中作出随机化假设。对于对对配设计,随机化假设表明,所有对配配配配配配配配配配配配配的治疗任务是独立的,每个对配对接受治疗的首个对象的概率和另外一种控制的概率与第一个接受控制和其他治疗的概率相同。在本条中,我们开发了一个新框架,用于测试随机化假设,该假设的基础是利用现代统计学习工具用侧信息解决组合问题。我们的测试框架是非参数性、有限抽样准确和与以前的建议不同。这个框架可用于测试随机化假设的宽松版本,称为偏差随机化假设。我们测试框架的一个重要副产品是称为残余灵敏值(RSV)的数量,它量化了观察到的共变异性不匹配的最低余积积度水平。我们主张在下游初级分析中考虑RSV。我们建议的方法通过重新分析对著名的病人进行心脏致癌的初步观察研究来说明。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
The Functional Correspondence Problem
Arxiv
0+阅读 · 2021年9月2日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
0+阅读 · 2021年9月1日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员