We develop a unified approach to hypothesis testing for various types of widely used functional linear models, such as scalar-on-function, function-on-function and function-on-scalar models. In addition, the proposed test applies to models of mixed types, such as models with both functional and scalar predictors. In contrast with most existing methods that rest on the large-sample distributions of test statistics, the proposed method leverages the technique of bootstrapping max statistics and exploits the variance decay property that is an inherent feature of functional data, to improve the empirical power of tests especially when the sample size is limited and the signal is relatively weak. Theoretical guarantees on the validity and consistency of the proposed test are provided uniformly for a class of test statistics.
翻译:我们为各种广泛使用的功能性线性模型,如卡路里对功能性模型、功能性功能性模型和卡路里功能性功能性模型等各种广泛使用的功能性线性模型制定统一的假设测试方法;此外,拟议的测试适用于混合类型模型,如功能性和卡路里预测器模型;与大量分布测试统计数据所依赖的大多数现有方法不同,拟议方法利用了采用最大统计速度的技术,利用了功能性数据固有特征的差异性衰减特性,以提高测试的经验能力,特别是在样本规模有限和信号相对薄弱的情况下,对拟议测试的有效性和一致性提供了统一的理论保证,对一类测试统计数据提供了统一的理论保证。