Image segmentation is a largely researched field where neural networks find vast applications in many facets of technology. Some of the most popular approaches to train segmentation networks employ loss functions optimizing pixel-overlap, an objective that is insufficient for many segmentation tasks. In recent years, their limitations fueled a growing interest in topology-aware methods, which aim to recover the correct topology of the segmented structures. However, so far, none of the existing approaches achieve a spatially correct matching between the topological features of ground truth and prediction. In this work, we propose the first topologically and feature-wise accurate metric and loss function for supervised image segmentation, which we term Betti matching. We show how induced matchings guarantee the spatially correct matching between barcodes in a segmentation setting. Furthermore, we propose an efficient algorithm to compute the Betti matching of images. We show that the Betti matching error is an interpretable metric to evaluate the topological correctness of segmentations, which is more sensitive than the well-established Betti number error. Moreover, the differentiability of the Betti matching loss enables its use as a loss function. It improves the topological performance of segmentation networks across six diverse datasets while preserving the volumetric performance. Our code is available in https://github.com/nstucki/Betti-matching.
翻译:神经网络发现神经网络在许多技术方面应用了广泛的神经学领域。一些培训分解网络最受欢迎的方法采用损失功能优化像素overlap,这个目标对于许多分解任务来说是不够的。近年来,它们的局限性促使人们越来越关注地形学认知方法,以恢复分层结构的正确地形学。然而,到目前为止,现有的方法都没有在空间上正确匹配地面真理和预测的表面学特征。在这项工作中,我们建议对受监督的图像分解采用第一种地形学和地貌学精确度和损失功能,我们称之为贝蒂匹配。我们展示了如何通过诱导匹配来保证分解环境中条码之间的空间正确匹配。此外,我们提出了一种高效的算法,以计算分解结构结构结构结构的正确性。我们表明,贝蒂匹配误差是一种可解释的衡量尺度,用以评估分解的表面学正确性比成熟的贝蒂数字错误更为敏感。此外,Betti匹配损失的不同性能使得Betti匹配性损失能够将其用作分解路段之间的空间正确性匹配功能,同时保存我们现有的磁体/ 数字性能。它改进了我们的高级数据网络。 它改进了我们的分解号。 它改进了我们的分层/ 改进了我们的分层/ 改进了我们的分解的性能。 它改进了我们的分解。