This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI.
翻译:本文提出了一个新颖的地形学学习框架,通过持续的同族学整合不同大小和地形的网络。这种具有挑战性的任务通过采用计算效率的地形损失而得以实现。拟议的损失的使用绕过了与匹配网络相关的内在计算瓶颈。我们在广泛的统计模拟中验证了这种方法,以便在区别不同地形的网络时评估其有效性。该方法进一步体现在一个双脑成像研究中,我们在该研究中确定大脑网络是否具有遗传遗传遗传性。这里的挑战在于难以将从休息状态功能MRI获得的在地形上不同的功能性脑网络覆盖到通过扩散MRI获得的模板结构脑网络。