We are interested in recovering information on a stochastic block model from the subgraph discovered by an exploring random walk. Stochastic block models correspond to populations structured into a finite number of types, where two individuals are connected by an edge independently from the other pairs and with a probability depending on their types. We consider here the dense case where the random network can be approximated by a graphon. This problem is motivated from the study of chain-referral surveys where each interviewee provides information on her/his contacts in the social network. First, we write the likelihood of the subgraph discovered by the random walk: biases are appearing since hubs and majority types are more likely to be sampled. Even for the case where the types are observed, the maximum likelihood estimator is not explicit any more. When the types of the vertices is unobserved, we use an SAEM algorithm to maximize the likelihood. Second, we propose a different estimation strategy using new results by Athreya and Roellin. It consists in de-biasing the maximum likelihood estimator proposed in Daudin et al. and that ignores the biases.


翻译:我们有兴趣从探索随机行走所发现的子图中获取关于随机行走所发现的随机区块模型的信息。 软行区块模型符合按一定数量类型构建的人口结构, 其中两个个人通过边缘与其他对子独立连接, 概率取决于其类型。 我们在这里考虑随机网络可以通过图解相近的密集案例。 这个问题的起因是每名受访者都提供其在社交网络中联系人的信息的链状转录调查研究。 首先, 我们写随机行走所发现子图的可能性: 偏向出现, 大多数类型更有可能被抽样。 即使在观察到了这些类型的情况下, 最大可能性的估测器也不再明确。 当脊椎的类型不被观测到时, 我们使用SAEM算法来尽量扩大可能性。 其次, 我们用Athreya 和 Roellin 的新结果提出不同的估计策略。 它包含对 Daudin 等人 和 Roellin 提议的最大可能性的分辨, 并且忽略了偏差。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月28日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员