Traffic forecasting plays a crucial role in intelligent transportation systems. The spatial-temporal complexities in transportation networks make the problem especially challenging. The recently suggested deep learning models share basic elements such as graph convolution, graph attention, recurrent units, and/or attention mechanism. In this study, we designed an in-depth comparative study for four deep neural network models utilizing different basic elements. For base models, one RNN-based model and one attention-based model were chosen from previous literature. Then, the spatial feature extraction layers in the models were substituted with graph convolution and graph attention. To analyze the performance of each element in various environments, we conducted experiments on four real-world datasets - highway speed, highway flow, urban speed from a homogeneous road link network, and urban speed from a heterogeneous road link network. The results demonstrate that the RNN-based model and the attention-based model show a similar level of performance for short-term prediction, and the attention-based model outperforms the RNN in longer-term predictions. The choice of graph convolution and graph attention makes a larger difference in the RNN-based models. Also, our modified version of GMAN shows comparable performance with the original with less memory consumption.


翻译:交通流量预测在智能运输系统中起着关键作用。交通网络的空间时空复杂性使问题特别具有挑战性。最近建议的深层次学习模型分享了基本元素,如图变、图引、经常性单元和/或关注机制。在本研究中,我们设计了利用不同基本要素的四种深神经网络模型的深入比较研究。对于基础模型,从以前的文献中选择了一个基于RNN的模型和一个基于关注的模型。然后,模型中的空间特征提取层被用图变和图形关注取代。为了分析不同环境中每个元素的性能,我们进行了四个真实世界数据集的实验:高速公路速度、高速公路流量、统一道路连接网络的城市速度和不同道路连接网络的城市速度。结果显示,基于RNNN和基于关注的模型显示了类似短期预测的性能水平,而基于关注的模型在长期预测中比RNNN的要差。选择了图形变换和图形关注度,在基于RNNN的模型中产生了更大的差异。此外,我们经过修改的GMAN的原始记忆与原始消费相比。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员