We consider goodness-of-fit tests with i.i.d. samples generated from a categorical distribution $(p_1,...,p_k)$. For a given $(q_1,...,q_k)$, we test the null hypothesis whether $p_j=q_{\pi(j)}$ for some label permutation $\pi$. The uncertainty of label permutation implies that the null hypothesis is composite instead of being singular. In this paper, we construct a testing procedure using statistics that are defined as indefinite integrals of some symmetric polynomials. This method is aimed directly at the invariance of the problem, and avoids the need of matching the unknown labels. The asymptotic distribution of the testing statistic is shown to be chi-squared, and its power is proved to be nearly optimal under a local alternative hypothesis. Various degenerate structures of the null hypothesis are carefully analyzed in the paper. A two-sample version of the test is also studied.


翻译:我们用绝对分布的 $( p_ 1,...,..., p_k) 生成的 i. d 样本来进行合理测试。 对于给定的 $( q_ 1,...,...,..., q_k) 美元, 我们用某种标签变换 $\ pi( j) 来测试无效假设。 标签变换的不确定性意味着无效假设是复合的, 而不是单数的。 在本文中, 我们用被定义为某些对称多元数字的无限整体统计数据来构建一个测试程序。 这种方法直接针对问题的变化, 并避免匹配未知标签的需要。 测试统计数据的无症状分布被显示为奇异, 其力量在本地的替代假设下被证明几乎是最佳的。 无效假设的各种退化结构在本文中得到了仔细分析。 测试的两种模样版本也得到了研究。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
AI掘金志
7+阅读 · 2019年7月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年10月18日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员