We consider goodness-of-fit tests with i.i.d. samples generated from a categorical distribution $(p_1,...,p_k)$. For a given $(q_1,...,q_k)$, we test the null hypothesis whether $p_j=q_{\pi(j)}$ for some label permutation $\pi$. The uncertainty of label permutation implies that the null hypothesis is composite instead of being singular. In this paper, we construct a testing procedure using statistics that are defined as indefinite integrals of some symmetric polynomials. This method is aimed directly at the invariance of the problem, and avoids the need of matching the unknown labels. The asymptotic distribution of the testing statistic is shown to be chi-squared, and its power is proved to be nearly optimal under a local alternative hypothesis. Various degenerate structures of the null hypothesis are carefully analyzed in the paper. A two-sample version of the test is also studied.
翻译:我们用绝对分布的 $( p_ 1,...,..., p_k) 生成的 i. d 样本来进行合理测试。 对于给定的 $( q_ 1,...,...,..., q_k) 美元, 我们用某种标签变换 $\ pi( j) 来测试无效假设。 标签变换的不确定性意味着无效假设是复合的, 而不是单数的。 在本文中, 我们用被定义为某些对称多元数字的无限整体统计数据来构建一个测试程序。 这种方法直接针对问题的变化, 并避免匹配未知标签的需要。 测试统计数据的无症状分布被显示为奇异, 其力量在本地的替代假设下被证明几乎是最佳的。 无效假设的各种退化结构在本文中得到了仔细分析。 测试的两种模样版本也得到了研究。