Gaussian random fields with Mat\'ern covariance functions are popular models in spatial statistics and machine learning. In this work, we develop a spatio-temporal extension of the Gaussian Mat\'ern fields formulated as solutions to a stochastic partial differential equation. The spatially stationary subset of the models have marginal spatial Mat\'ern covariances, and the model also extends to Whittle-Mat\'ern fields on curved manifolds, and to more general non-stationary fields. In addition to the parameters of the spatial dependence (variance, smoothness, and practical correlation range) it additionally has parameters controlling the practical correlation range in time, the smoothness in time, and the type of non-separability of the spatio-temporal covariance. Through the separability parameter, the model also allows for separable covariance functions. We provide a sparse representation based on a finite element approximation, that is well suited for statistical inference and which is implemented in the R-INLA software.
翻译:带有 Mat\'ern 共变函数的 Gausian 随机字段是空间统计和机器学习中流行的模式。 在这项工作中, 我们开发了高斯 Mat\' ern 域的时空延伸, 用于解决随机偏差方程式。 模型的空间固定子集具有边缘空间 Mat\'ern 共变函数, 模型还扩展到曲线形体上的 Whittle- Mat\'ern 字段, 以及更普通的非静止字段。 除了空间依赖参数( 变异性、 平滑性和 实际关联范围) 之外, 它还有参数来控制实际关联范围的时间、 时间的平滑度和 宽度- 时空共变性 类型 。 通过分离参数, 模型还允许 分化共变函数 。 我们根据有限的元素近似值提供少量的表达方式, 这非常适合统计推导, 并在 R- INLA 软件中执行 。