In social choice theory, voting methods can be classified by invariance properties: a voting method is said to be C1 if it selects the same winners for any two profiles of voter preferences that produce the same majority graph on the set of candidates; a voting method is said to be pairwise if it selects the same winners for any two preference profiles that produce the same weighted majority graph on the set of candidates; and other intermediate classifications are possible. As there are far fewer majority graphs or weighted majority graphs than there are preference profiles (for a bounded number of candidates and voters), computer-aided techniques such as satisfiability solving become practical for proving results about C1 and pairwise methods. In this paper, we develop an approach to generalizing impossibility theorems proved for C1 or pairwise voting methods to impossibility theorems covering all voting methods. We apply this approach to impossibility theorems involving "variable candidate" axioms--in particular, social choice versions of Sen's well-known $\gamma$ and $\alpha$ axioms for individual choice--which concern what happens when a candidate is added or removed from an election. A key tool is a construction of preference profiles from majority graphs and weighted majority graphs that differs from the classic constructions of McGarvey and Debord, especially in better commutative behavior with respect to other operations on profiles.
翻译:在社会选择理论中,投票方法可以按变化特性分类:如果投票方法为任何两种选民偏好简介选择相同的赢家,从而产生一套候选人的相同多数图;如果为任何两种偏好简介选择相同的赢家,从而产生一套候选人的相同加权多数图,那么投票方法可以说是双对的;如果为两种偏好简介选择相同的赢家,从而产生一套候选人的相同加权多数图;以及其他中间分类是可能的。由于多数图或加权多数图比优惠简介少得多(对于受限制的候选人和选民人数而言 ), 以计算机辅助方法,例如对等可比较性解决办法,成为证明C1和对称方法结果的实用方法。 在本论文中,我们制定了一种方法,将C1所证明的不可能性或对称投票方法的不可能性标为涵盖所有投票方法的任何两种偏差。我们用这种方法解决不可能涉及“可变候选人”的xxionom-特别是Sen's的社会选择版本(众所周知的候选人和选民人数)和对个人选择的正数值(以美元计价计算)等技术,这关系到个人选择性方法如何,特别是在MG-选举的多数的模型上,从一个最高级的模型中,从一个最高级的压式的压式的压前的公式中,从一个压式的压式的压式的压式选择。