Complex spectrum and magnitude are considered as two major features of speech enhancement and dereverberation. Traditional approaches always treat these two features separately, ignoring their underlying relationship. In this paper, we propose Uformer, a Unet based dilated complex & real dual-path conformer network in both complex and magnitude domain for simultaneous speech enhancement and dereverberation. We exploit time attention (TA) and dilated convolution (DC) to leverage local and global contextual information and frequency attention (FA) to model dimensional information. These three sub-modules contained in the proposed dilated complex & real dual-path conformer module effectively improve the speech enhancement and dereverberation performance. Furthermore, hybrid encoder and decoder are adopted to simultaneously model the complex spectrum and magnitude and promote the information interaction between two domains. Encoder decoder attention is also applied to enhance the interaction between encoder and decoder. Our experimental results outperform all SOTA time and complex domain models objectively and subjectively. Specifically, Uformer reaches 3.6032 DNSMOS on the blind test set of Interspeech 2021 DNS Challenge, which outperforms all top-performed models. We also carry out ablation experiments to tease apart all proposed sub-modules that are most important.
翻译:复杂的频谱和规模被视为语音增强和偏差的两个主要特征。 传统方法总是将这两个特征分开处理, 忽略其内在关系 。 在本文中, 我们提议在复杂和重要领域同时增强语音和偏差, 在复杂和重要领域同时使用基于铀放大的复杂和真实的双路径兼容网络, 以同时增强语音和偏差。 我们利用时间注意( TA) 和放大变异( DC) 来利用本地和全球背景信息和频率注意模型的维度信息。 这三个子模块包含在拟议的扩展复杂和真实双向兼容模块中, 有效地改进了语音增强和偏差性功能。 此外, 混合编码器和解码器被同时用于模拟复杂的频谱和大小, 并促进两个领域之间的信息互动 。 电解码器的注意也用来加强编码器和解码器之间的相互作用。 我们的实验结果客观和主观地将所有SOTA时间和复杂域模型都置于外。 具体地说,, Uexfor 将3. 6032 DNSMOS 用于Indiscreal roductions made 2021 最关键的Interformastring Aust and wes fefrodustreformaxeformaxeformld.