In this paper, we present a new explainability formalism designed to explain how each input variable of a test set impacts the predictions of machine learning models. Hence, we propose a group explainability formalism for trained machine learning decision rules, based on their response to the variability of the input variables distribution. In order to emphasize the impact of each input variable, this formalism uses an information theory framework that quantifies the influence of all input-output observations based on entropic projections. This is thus the first unified and model agnostic formalism enabling data scientists to interpret the dependence between the input variables, their impact on the prediction errors, and their influence on the output predictions. Convergence rates of the entropic projections are provided in the large sample case. Most importantly, we prove that computing an explanation in our framework has a low algorithmic complexity, making it scalable to real-life large datasets. We illustrate our strategy by explaining complex decision rules learned by using XGBoost, Random Forest or Deep Neural Network classifiers on various datasets such as Adult income, MNIST and CelebA. We finally make clear its differences with the explainability strategies \textit{LIME} and \textit{SHAP}, that are based on single observations. Results can be reproduced by using the freely distributed Python toolbox https://gems-ai.com}.
翻译:在本文中,我们提出了一种新的解释性形式主义,旨在解释测试组的每个输入变量如何影响机器学习模型的预测。因此,我们建议根据对输入变量分布的变异性的反应,为经过培训的机器学习决策规则提出一个集体解释性形式主义。为了强调每个输入变量的影响,这种形式主义使用一个信息理论框架,以量化基于预测的输入输出观测的影响。因此,这是第一个统一和模型性不可知的正式主义,使数据科学家能够解释输入变量之间的依赖性、它们对预测错误的影响以及它们对产出预测的影响。在大样本中提供了经过培训的机器学习决策规则的一致率。最重要的是,我们证明在我们框架中计算解释的解释是低算法复杂性的,使得它能够与真实的大型数据集进行缩放。我们通过解释复杂的决策规则,通过使用 XGBoost、随机森林或深神经网络的分类,使数据科学家能够解释输入变量,例如成人收入、MNIST和CeebA。我们最后用其宏预测的一致率率率比率来澄清其最小性战略。我们通过工具来解释其复制的结果。