Incorporating deep neural networks in image compressive sensing (CS) receives intensive attentions in multimedia technology and applications recently. As deep network approaches learn the inverse mapping directly from the CS measurements, the reconstruction speed is significantly faster than the conventional CS algorithms. However, for existing network based approaches, a CS sampling procedure has to map a separate network model. This may potentially degrade the performance of image CS with block-wise sampling because of blocking artifacts, especially when multiple sampling rates are assigned to different blocks within an image. In this paper, we develop a multichannel deep network for block-based image CS by exploiting inter-block correlation with performance significantly exceeding the current state-of-the-art methods. The significant performance improvement is attributed to block-wise approximation but full image removal of blocking artifacts. Specifically, with our multichannel structure, the image blocks with a variety of sampling rates can be reconstructed in a single model. The initially reconstructed blocks are then capable of being reassembled into a full image to improve the recovered images by unrolling a hand-designed block based CS recovery algorithm. Experimental results demonstrate that the proposed method outperforms the state-of-the-art CS methods by a large margin in terms of objective metrics and subjective visual image quality. Our source codes are available at https://github.com/siwangzhou/DeepBCS.


翻译:将深心神经网络纳入图像压缩传感器(CS)最近受到多媒体技术和应用的高度关注。随着深心网络方法直接从 CS 测量中学习反向映射,重建速度大大快于常规 CS算法。然而,对于现有的基于网络的方法,CS 取样程序必须绘制一个单独的网络模型。这可能会通过屏蔽人工制品而使图像 CS 的性能降低,特别是当多个取样率被分配到图像中的不同区块时。在本文中,我们开发了一个用于块基图像 CS 的多通道深心网络,利用区块与当前最先进的性能之间的交互关系。 显著的性能改进归功于基于块的近似但完全图像的阻挡性能。 具体地说,由于我们的多声道结构,具有各种采样率的图像区块可以通过一个单一模型进行重建。 最初重建的区块随后能够重新组合成一个完整的图像来改进回收的图像,方法是将基于手设计的 CS 恢复法的区块与目前最先进的方法。 实验性结果结果显示我们所持的C/BS 的图像质量标准, 以现有的硬度标准格式,以现有的硬度标准方法显示我们现有的硬度标准。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员