The prior detection of a heart attack could lead to the saving of one's life. Putting specific criteria into a system that provides an early warning of an imminent at-tack will be advantageous to a better prevention plan for an upcoming heart attack. Some studies have been conducted for this purpose, but yet the goal has not been reached to prevent a patient from getting such a disease. In this paper, Neural Network trained with Particle Swarm Optimization (PSONN) is used to analyze the input criteria and enhance heart attack anticipation. A real and novel dataset that has been recorded on the disease is used. After preprocessing the data, the features are fed into the system. As a result, the outcomes from PSONN have been evaluated against those from other algorithms. Decision Tree, Random Forest, Neural network trained with Backpropagation (BPNN), and Naive Bayes were among those employed. Then the results of 100%, 99.2424%, 99.2323%, 81.3131%, and 66.4141% are produced concerning the mentioned algorithms, which show that PSONN has recorded the highest accuracy rate among all other tested algorithms.


翻译:先前检测到的心脏病发作可能会拯救一个人的生命。 将特定标准输入一个系统, 提供即将到来的心脏病发作的预警, 将有利于为即将到来的心脏病发作的更好的预防计划。 已经为此进行了一些研究, 但目标尚未达到, 以防止病人患上这种疾病。 在本文中, 接受过粒子摇篮优化( PSONN) 培训的神经网络用于分析输入标准, 并增加心脏病发作的预兆。 使用了一个真实和新的数据集, 记录在疾病上的数据。 在预处理数据后, 功能被输入到系统中。 结果, PSONN 的结果被对照其他算法的结果进行了评估。 决策树、 随机森林、 神经网络( BPNNN ), 并且使用了 Nive Bayes 。 之后, 生成了100%、 99.244%、 99.23%、 81.331% 和 66.4141% 的关于上述算法的结果, 这表明 PSONN 记录了所有其他算法中的最高精确率。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2019年6月25日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员