The number of wireless devices which are connected to a single Wireless Local Area Network continues to grow each year. As a result, the orchestration of so many devices becomes a daunting, resource--consuming task, especially when the resources available at the single access point are limited, and it is hard to anticipate which devices will request access at any given time. On the other hand, the number of antennas on both the devices and the access point grows as well, facilitating advanced joint scheduling and coding techniques. In this paper, we leverage the large number of antennas and suggest a massive multiple-user multiple-input-multiple-output (MU-MIMO) scheme using sparse coding based on Group Testing (GT) principles. The scheme allows for a small subset of devices to transmit simultaneously, without a preceding scheduling phase or coordination, thus reducing overhead and complexity. Specifically, we show that out of a population of \(N\) devices, it is possible to jointly identify and decode \(K\) devices, unknown in advance, simultaneously and without any scheduling. The scheme utilizes minimal knowledge of channel state, uses an efficient (in both run-time and space) decoding algorithm, and requires \(O(K\log NC)\) antennas, where \(C\) is the number of messages per device. In fact, we prove that this scheme is order--optimal in the number of users and messages. This is done by deriving sufficient conditions for a vanishing error probability (a direct result), bounding the minimal number of antennas necessary for any such scheme (a converse result), and showing that these results are asymptotically tight.
翻译:连接到单一无线局域网的无线装置数量每年继续增长。 因此, 如此多的装置的管弦化成为一个令人生畏、 耗费资源的任务, 特别是当单个接入点的可用资源有限, 并且很难预测在任何特定时间哪个装置会要求访问。 另一方面, 设备上和接入点上的天线数量也在增加, 方便了先进的联合调度和编码技术。 在本文中, 我们利用大量天线的数量, 并表明使用基于集团测试原则的分散式直接编码( MU- MIMO) 方案。 这个方案允许一小组装置同时传输, 而不在任何前的时间安排阶段或协调的情况下, 从而降低管理及复杂程度。 具体地说, 我们显示, 在一个数量为\ ( K\) 和 ( K) 连接点的装置中, 可以联合识别和解码( ) 数量, 用于( ) 预先、 同时和 任何调度的( ) 最小的天线( MMU- MIMO) ) 。 这个方案利用最起码的频道状态、 运行时间和 解码系统 的结果, 显示一个高效的( 运行/ dal- k\ 和 的系统, 的系统结果。