Designing models that produce accurate predictions is the fundamental objective of machine learning (ML). This work presents methods demonstrating that when the derivatives of target variables (outputs) with respect to inputs can be extracted from processes of interest, e.g., neural networks (NN) based surrogate models, they can be leveraged to further improve the accuracy of differentiable ML models. This paper generalises the idea and provides practical methodologies that can be used to leverage gradient information (GI) across a variety of applications including: (1) Improving the performance of generative adversarial networks (GANs); (2) efficiently tuning NN model complexity; (3) regularising linear regressions. Numerical results show that GI can effective enhance ML models with existing datasets, demonstrating its value for a variety of applications.
翻译:得出准确预测的设计模型是机器学习的基本目标。这项工作提出的方法表明,当目标变量(产出)在投入方面的衍生物能够从感兴趣的过程(例如以神经网络为基础的替代模型)中提取时,这些模型可以被利用来进一步提高可区分的ML模型的准确性。本文概括了这一想法并提供实用方法,可以用来在各种应用中利用梯度信息,包括:(1) 改进基因对抗网络的性能;(2) 有效地调整NNN模型的复杂程度;(3) 规范线性回归。数字结果表明,GI能够有效地用现有的数据集加强ML模型,表明其对于各种应用的价值。