We investigate a class of models for non-parametric estimation of probability density fields based on scattered samples of heterogeneous sizes. The considered SLGP models are Spatial extensions of Logistic Gaussian Process (LGP) models and inherit some of their theoretical properties but also of their computational challenges. We revisit LGPs from the perspective of random measures and their densities, and investigate links between properties of LGPs and underlying processes. Turning to SLGPs is motivated by their ability to deliver probabilistic predictions of conditional distributions at candidate points, to allow (approximate) conditional simulations of probability densities, and to jointly predict multiple functionals of target distributions. We show that SLGP models induced by continuous GPs can be characterized by the joint Gaussianity of their log-increments and leverage this characterization to establish theoretical results pertaining to spatial regularity. We extend the notion of mean-square continuity to random measure fields and establish sufficient conditions on covariance kernels underlying SLGPs for associated models to enjoy such regularity properties. From the practical side, we propose an implementation relying on Random Fourier Features and demonstrate its applicability on synthetic examples and on temperature distributions at meteorological stations, including probabilistic predictions of densities at left-out stations.


翻译:我们根据分散的混杂体大小样本调查一组不参数估计概率密度域的模型。考虑的 SLGP 模型是物流高斯进程模型的空间延伸,继承其一些理论属性,但也继承其计算挑战。我们从随机计量及其密度的角度重新研究LGP,并调查LGP特性与基础流程之间的联系。转向SLGP的动机是它们能够对候选点的有条件分布进行概率预测,允许(近似)对概率密度进行有条件模拟,并共同预测目标分布的多重功能。我们表明,由连续的GOP引起的 SLGP 模型的特征可以是其日志密度和密度的联合高清,并利用这一特征来确立与空间规律有关的理论结果。我们把中位连续性的概念扩大到随机测量字段,并为SLGP背后的相关模型建立足够的恒定性内存条件以享受这种定期性特性。我们从实际角度展示了持续GPPM模型的可应用性,并展示了在合成轨道上的可应用性,还展示了在合成轨道上的可变性模型的温度分布。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
41+阅读 · 2021年4月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月28日
Arxiv
0+阅读 · 2021年11月27日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月28日
Arxiv
0+阅读 · 2021年11月27日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
23+阅读 · 2021年3月4日
Top
微信扫码咨询专知VIP会员