Protein-ligand interactions (PLIs) are fundamental to biochemical research and their identification is crucial for estimating biophysical and biochemical properties for rational therapeutic design. Currently, experimental characterization of these properties is the most accurate method, however, this is very time-consuming and labor-intensive. A number of computational methods have been developed in this context but most of the existing PLI prediction heavily depends on 2D protein sequence data. Here, we present a novel parallel graph neural network (GNN) to integrate knowledge representation and reasoning for PLI prediction to perform deep learning guided by expert knowledge and informed by 3D structural data. We develop two distinct GNN architectures, GNNF is the base implementation that employs distinct featurization to enhance domain-awareness, while GNNP is a novel implementation that can predict with no prior knowledge of the intermolecular interactions. The comprehensive evaluation demonstrated that GNN can successfully capture the binary interactions between ligand and proteins 3D structure with 0.979 test accuracy for GNNF and 0.958 for GNNP for predicting activity of a protein-ligand complex. These models are further adapted for regression tasks to predict experimental binding affinities and pIC50 is crucial for drugs potency and efficacy. We achieve a Pearson correlation coefficient of 0.66 and 0.65 on experimental affinity and 0.50 and 0.51 on pIC50 with GNNF and GNNP, respectively, outperforming similar 2D sequence-based models. Our method can serve as an interpretable and explainable artificial intelligence (AI) tool for predicted activity, potency, and biophysical properties of lead candidates. To this end, we show the utility of GNNP on SARS-Cov-2 protein targets by screening a large compound library and comparing our prediction with the experimentally measured data.


翻译:对生化研究来说,蛋白质和相互作用(PLI)是生化学研究的基础,其识别对于估计生物物理和生化特性以合理治疗设计而言至关重要。目前,对这些属性的实验性定性是最精确的方法,然而,这是非常耗时和劳动密集型的方法。在此背景下已经开发出一些计算方法,但现有的PLI预测大多取决于2D蛋白序列数据。在这里,我们展示了一个新的平行的平行图形神经网络(GNNN),以整合PLI预测的知识体现和推理,以在专家知识指导下进行深度学习,并以3D结构数据为根据。我们开发了两种不同的GNNN结构,而人工合成的GNNF是使用独特的变速法来提高域内意识的基础,而GNP是全新的方法。GNF1 蛋白质和蛋白质3D结构(GNNF的测试精度准确度和0.958 GNP,用于预测蛋白质和复杂物质的可耗度活动。这些模型进一步调整了INNF的实验性模型, 和实验性GNF5的精度,我们用来预测了基值的精度的精度和精确度,我们实验室的数值的精度的精度和温度的精确度,我们为实验性能的数值的精确度的数值的精确度和温度的精确度,我们之间的精确度, 和精确度,我们之间的精确度,我们制的基值。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
60+阅读 · 2020年1月10日
必读的7篇 IJCAI 2019【图神经网络(GNN)】相关论文
专知会员服务
91+阅读 · 2020年1月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
8+阅读 · 2021年2月19日
Arxiv
15+阅读 · 2020年2月5日
Graph Transformer for Graph-to-Sequence Learning
Arxiv
4+阅读 · 2019年11月30日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
13+阅读 · 2021年6月14日
Arxiv
8+阅读 · 2021年2月19日
Arxiv
15+阅读 · 2020年2月5日
Graph Transformer for Graph-to-Sequence Learning
Arxiv
4+阅读 · 2019年11月30日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员