The feature learning methods based on convolutional neural network (CNN) have successfully produced tremendous achievements in image classification tasks. However, the inherent noise and some other factors may weaken the effectiveness of the convolutional feature statistics. In this paper, we investigate Discrete Wavelet Transform (DWT) in the frequency domain and design a new Wavelet-Attention (WA) block to only implement attention in the high-frequency domain. Based on this, we propose a Wavelet-Attention convolutional neural network (WA-CNN) for image classification. Specifically, WA-CNN decomposes the feature maps into low-frequency and high-frequency components for storing the structures of the basic objects, as well as the detailed information and noise, respectively. Then, the WA block is leveraged to capture the detailed information in the high-frequency domain with different attention factors but reserves the basic object structures in the low-frequency domain. Experimental results on CIFAR-10 and CIFAR-100 datasets show that our proposed WA-CNN achieves significant improvements in classification accuracy compared to other related networks. Specifically, based on MobileNetV2 backbones, WA-CNN achieves 1.26% Top-1 accuracy improvement on the CIFAR-10 benchmark and 1.54% Top-1 accuracy improvement on the CIFAR-100 benchmark.


翻译:以进化神经网络为基础的特征学习方法成功地在图像分类任务方面取得了巨大的成就,然而,内在的噪音和其他一些因素可能会削弱进化特征统计的有效性。在本文件中,我们调查频率域中的分解波列变换(DWT),并设计一个新的波列-惯性(WA)块,仅能在高频域引起注意。在此基础上,我们提议建立一个波列-惯性动态神经网络(WA-CNN),用于图像分类。具体地说,WA-CNN将特征图分解成低频和高频组成部分,用于储存基本物体的结构以及详细的信息和噪音。然后,WA区被利用,以不同关注因素捕捉高频域的详细信息,但保留低频域的基本目标结构。CFAR-10和CIFAR-100数据集的实验结果显示,我们提议的WA-CN比其他相关网络的分类准确度显著提高。具体地说,基于SOPRO-FAR-1基准1和IMFAR-1的改进率。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
注意力机制介绍,Attention Mechanism
专知会员服务
169+阅读 · 2019年10月13日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
注意力机制介绍,Attention Mechanism
专知会员服务
169+阅读 · 2019年10月13日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员