We present UrbanFly: an uncertainty-aware real-time planning framework for quadrotor navigation in urban high-rise environments. A core aspect of UrbanFly is its ability to robustly plan directly on the sparse point clouds generated by a Monocular Visual Inertial SLAM (VINS) backend. It achieves this by using the sparse point clouds to build an uncertainty-integrated cuboid representation of the environment through a data-driven monocular plane segmentation network. Our chosen world model provides faster distance queries than the more common voxel-grid representation, and UrbanFly leverages this capability in two different ways leading to two trajectory optimizers. The first optimizer uses a gradient-free cross-entropy method to compute trajectories that minimize collision probability and smoothness cost. Our second optimizer is a simplified version of the first and uses a sequential convex programming optimizer initialized based on probabilistic safety estimates on a set of randomly drawn trajectories. Both our trajectory optimizers are made computationally tractable and independent of the nature of underlying uncertainty by embedding the distribution of collision violations in Reproducing Kernel Hilbert Space. Empowered by the algorithmic innovation, UrbanFly outperforms competing baselines in metrics such as collision rate, trajectory length, etc., on a high-fidelity AirSim simulator augmented with synthetic and real-world dataset scenes.
翻译:我们展示了城市森林:一个具有不确定性的实时规划框架,用于城市高层环境中的二次三角航行。城市森林的核心方面是,它能够直接在单视视惯性SLISM(VINS)后端产生的稀点云层上进行强力规划。它通过利用稀点云,通过数据驱动的单色偏移分割网络,建立不确定综合的幼崽环境代表。我们所选择的世界模型提供了比更常见的 voxel-grid 代表点更快的距离查询,而城市森林模型则以两种不同的方式利用这一能力,导致两个轨道优化者。第一个优化者使用无梯度跨渗透性交叉渗透法来计算轨道轨迹,以尽量减少碰撞概率概率和光滑度成本。我们的第二个优化者是第一个点的简化版本,并使用根据随机绘制的轨迹谱的概率安全估算而初始化的螺旋编程优化器。我们两个轨迹优化者都是以两种不同的方式利用两种不同的方式利用这种能力来利用这种能力来产生两种不同的方式。第一个优化优化者使用一种无梯度的跨点的方法,即利用一种无梯度的跨点方法来计算,即使用一种无梯度的跨偏向的跨偏移方法来计算方法来计算,用以计算,用以计算,从而将碰撞碰撞概率地计算,将碰撞概率的轨道的轨道上碰撞概率率的轨道上断断断断断断流的轨道的分流。