Consider a graph $G = (V, E)$ and a function $f: V \rightarrow \{0, 1, 2\}$. A vertex $u$ with $f(u)=0$ is defined as \emph{undefended} by $f$ if it lacks adjacency to any vertex with a positive $f$-value. The function $f$ is said to be a \emph{Weak Roman Dominating function} (WRD function) if, for every vertex $u$ with $f(u) = 0$, there exists a neighbour $v$ of $u$ with $f(v) > 0$ and a new function $f': V \rightarrow \{0, 1, 2\}$ defined in the following way: $f'(u) = 1$, $f'(v) = f(v) - 1$, and $f'(w) = f(w)$, for all vertices $w$ in $V\setminus\{u,v\}$; so that no vertices are undefended by $f'$. The total weight of $f$ is equal to $\sum_{v\in V} f(v)$, and is denoted as $w(f)$. The \emph{Weak Roman Domination Number} denoted by $\gamma_r(G)$, represents $min\{w(f)~\vert~f$ is a WRD function of $G\}$. For a given graph $G$, the problem of finding a WRD function of weight $\gamma_r(G)$ is defined as the \emph{Minimum Weak Roman domination problem}. The problem is already known to be NP-hard for bipartite and chordal graphs. In this paper, we further study the algorithmic complexity of the problem. We prove the NP-hardness of the problem for star convex bipartite graphs and comb convex bipartite graphs, which are subclasses of bipartite graphs. In addition, we show that for the bounded degree star convex bipartite graphs, the problem is efficiently solvable. We also prove the NP-hardness of the problem for split graphs, a subclass of chordal graphs. On the positive side, we give polynomial-time algorithms to solve the problem for $P_4$-sparse graphs. Further, we have presented some approximation results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员