We consider the problem of estimating the discrete clustering structures under the Sub-Gaussian Mixture Model. Our main results establish a hidden integrality property of a semidefinite programming (SDP) relaxation for this problem: while the optimal solution to the SDP is not integer-valued in general, its estimation error can be upper bounded by that of an idealized integer program. The error of the integer program, and hence that of the SDP, are further shown to decay exponentially in the signal-to-noise ratio. In addition, we show that the SDP relaxation is robust under the semi-random setting in which an adversary can modify the data generated from the mixture model. In particular, we generalize the hidden integrality property to the semi-random model and thereby show that SDP achieves the optimal error bound in this setting. These results together highlight the "global-to-local" mechanism that drives the performance of the SDP relaxation. To the best of our knowledge, our result is the first exponentially decaying error bound for convex relaxations of mixture models. A corollary of our results shows that in certain regimes the SDP solutions are in fact integral and exact. More generally, our results establish sufficient conditions for the SDP to correctly recover the cluster memberships of $(1-\delta)$ fraction of the points for any $\delta\in(0,1)$. As a special case, we show that under the $d$-dimensional Stochastic Ball Model, SDP achieves non-trivial (sometimes exact) recovery when the center separation is as small as $\sqrt{1/d}$, which improves upon previous exact recovery results that require constant separation.


翻译:我们考虑在 Sub-Gausian MIxture 模型下估算离散组群结构的问题。 我们的主要结果为这一问题确定了半无限期编程(SDP)松绑的隐藏整体性属性。 虽然对 SDP 的隐藏整体性属性(SDP) 解密性属性( SDP), 但它的估算误差可以被理想化整流程序所覆盖。 整数程序的错误, 以及因此对SDP的错误, 在信号- 美元对音量比率中进一步显示成指数性衰变。 此外, 我们显示 SDP 的放松在半随机设置下非常强, 对手可以修改混合模型中生成的数据。 特别是, 我们将隐藏的整体性整体性属性属性属性属性( SDP ) 与半随机值模型相比, 显示SDP 最优化的组合值 。 这些结果加在一起, 驱动SDP 的“ 全球对本地值” 机制, 和 SDP 美元 的恢复结果是首次指数 。 在某些制度下, 当SDP 的正常的回收结果时, 将SDP 的精确地显示SDP 的精确值 。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
专知会员服务
159+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关资讯
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员