Semiconductor device models are essential to understand the charge transport in thin film transistors (TFTs). Using these TFT models to draw inference involves estimating parameters used to fit to the experimental data. These experimental data can involve extracted charge carrier mobility or measured current. Estimating these parameters help us draw inferences about device performance. Fitting a TFT model for a given experimental data using the model parameters relies on manual fine tuning of multiple parameters by human experts. Several of these parameters may have confounding effects on the experimental data, making their individual effect extraction a non-intuitive process during manual tuning. To avoid this convoluted process, we propose a new method for automating the model parameter extraction process resulting in an accurate model fitting. In this work, model choice based approximate Bayesian computation (aBc) is used for generating the posterior distribution of the estimated parameters using observed mobility at various gate voltage values. Furthermore, it is shown that the extracted parameters can be accurately predicted from the mobility curves using gradient boosted trees. This work also provides a comparative analysis of the proposed framework with fine-tuned neural networks wherein the proposed framework is shown to perform better.
翻译:半导体设备模型对于理解薄膜晶体管(TFTs)的充电传输至关重要。 使用这些 TFT 模型来进行推论, 包括估算与实验数据相适应的参数。 这些实验数据可能涉及提取充电载体的移动性或测量电流。 估计这些参数有助于我们得出设备性能的推论。 使用模型参数为特定实验数据配置 TFT 模型依靠人工微调人类专家的多种参数。 其中一些参数可能对实验数据产生混杂影响, 使得它们各自的效果在手工调试期间提取一个非直观过程。 为避免这一混杂过程, 我们提出了一个新的方法, 用于对模型参数提取过程进行自动调节, 从而实现精确的模型安装。 在这项工作中, 模型选择基础大致是巴耶西亚计算 (aBc), 用于利用各种门电压值观测到的移动性能来生成估计参数的外表层分布。 此外, 这些参数可以精确地从移动曲线中提取出一个非直观过程。 这项工作还提供了对拟议框架的比较分析,, 将显示为精细调的神经网络 。