We propose a method by which to recover an underlying graph from a set of multivariate wave signals that is discretely sampled from a solution of the graph wave equation. Herein, the graph wave equation is defined with the graph Laplacian, and its solution is explicitly given as a mode expansion of the Laplacian eigenvalues and eigenfunctions. For graph recovery, our idea is to extract modes corresponding to the square root of the eigenvalues from the discrete wave signals using the DMD method, and then to reconstruct the graph (Laplacian) from the eigenfunctions obtained as amplitudes of the modes. Moreover, in order to estimate modes more precisely, we modify the DMD method under an assumption that only stationary modes exist, because graph wave functions always satisfy this assumption. In conclusion, we demonstrate the proposed method on the wave signals over a path graph. Since our graph recovery procedure can be applied to non-wave signals, we also check its performance on human joint sensor time-series data.


翻译:我们建议一种方法,从一组多变波信号中回收一个基本图,该图是从图形波方形的溶液中分离抽样的。 这里, 图形波方程式用图解 Laplacian 来定义, 其解析方法被明确描述为 Laplacian egenvalies 和 eigenconditions 的一种模式扩展。 对于图解回收, 我们的想法是利用 DMD 方法从离散波信号中提取与断流值平方根相对应的模型, 然后从以模式振幅方式的振幅获得的图( Laplaceian) 中重建图( Laplacean) 。 此外, 为了更准确地估计模式, 我们修改 DMD 方法, 假设只有固定模式存在, 因为图形波函数总是满足这一假设。 最后, 我们用路径图来展示与波信号相对应的方法。 由于我们的图解回收程序可以应用于非波信号, 我们还检查其在人类联合传感器时间序列数据的性。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
9+阅读 · 2021年10月1日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
8+阅读 · 2020年10月12日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
相关资讯
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员