A tournament graph $T = \left(V, E \right)$ is an oriented complete graph, which can be used to model a round-robin tournament between $n$ players. In this paper, we address the problem of finding a champion of the tournament, also known as Copeland winner, which is a player that wins the highest number of matches. Solving this problem has important implications on several Information Retrieval applications, including Web search, conversational IR, machine translation, question answering, recommender systems, etc. Our goal is to solve the problem by minimizing the number of times we probe the adjacency matrix, i.e., the number of matches played. We prove that any deterministic/randomized algorithm finding a champion with constant success probability requires $\Omega(\ell n)$ comparisons, where $\ell$ is the number of matches lost by the champion. We then present an optimal deterministic algorithm matching this lower bound without knowing $\ell$ and we extend our analysis to three strictly related problems. Lastly, we conduct a comprehensive experimental assessment of the proposed algorithms to speed up a state-of-the-art solution for ranking on public data. Results show that our proposals speed up the retrieval of the champion up to $13\times$ in this scenario.
翻译:锦标图 $T = left( V, E\right) = left ( V, E\right) 是一个面向方向的完整图表, 可用于模拟美元球员之间的圆柱形锦标赛。 在本文中, 我们处理寻找锦标锦标赛冠军的问题, 也称为Copeland 获胜者。 解决该问题对信息检索的多个应用程序有重要影响, 包括网络搜索、 谈话性 IR、 机器翻译、 答题、 推荐系统等。 我们的目标是通过尽可能减少我们探测相邻矩阵的次数来解决这个问题, 即所选的匹配数。 我们证明, 任何确定性/ 随机化的算法, 找到一个常有成功概率的冠军, 都需要$( ell n) 的比较。 美元是冠军丢失的匹配数。 我们然后提出一种最佳的确定性算法, 匹配这个较低的约束值, 却不知道$ ell$, 我们的分析扩大到三个严格相关的问题。 最后, 我们用一个全面的实验性评估, 评估, 来找到一个稳定的算法, 以快速的路径, 来显示我们 13 级的进度 的 的进度 。