We describe a nearly-linear time algorithm to solve the linear system $L_1x = b$ parameterized by the first Betti number of the complex, where $L_1$ is the 1-Laplacian of a simplicial complex $K$ that is a subcomplex of a collapsible complex $X$ linearly embedded in $\mathbb{R}^{3}$. Our algorithm generalizes the work of Black et al.~[SODA2022] that solved the same problem but required that $K$ have trivial first homology. Our algorithm works for complexes $K$ with arbitrary first homology with running time that is nearly-linear with respect to the size of the complex and polynomial with respect to the first Betti number. The key to our solver is a new algorithm for computing the Hodge decomposition of 1-chains of $K$ in nearly-linear time. Additionally, our algorithm implies a nearly quadratic solver and nearly quadratic Hodge decomposition for the 1-Laplacian of any simplicial complex $K$ embedded in $\mathbb{R}^{3}$, as $K$ can always be expanded to a collapsible embedded complex of quadratic complexity.


翻译:我们描述一个近线性时间算法, 以解决线性系统 $L_ 1x = b$ 参数, 由该综合体的第一个 Betti 数来计算, 其中, $_ 1 美元是一个简单复合体 $K $K 的一拉拉数, 是一个可折叠的复合体 $X$ 的子复合体, 线性嵌入$mathbb{R 3} 美元。 我们的算法概括了 Black et al. ~ [SODA20222] 的工作, 解决了同样的问题, 却要求$K$ 具有微不足道的第一同质。 我们的算法对具有任意性第一个同质的复合体 $ $ 和运行时间接近线性, 与第一个贝蒂 数的复合体 $ 和 多元体的大小有关。 我们的解算法是一个新的算法, 在近线性时间里, 我们的算法意味着一个近乎二次溶质的溶剂溶液溶液溶液溶液溶液, $3K 嵌入的 。

0
下载
关闭预览

相关内容

【NUS-Xavier教授】注意力神经网络,79页ppt
专知会员服务
63+阅读 · 2021年11月25日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
117+阅读 · 2019年12月24日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月21日
Arxiv
0+阅读 · 2022年6月20日
Arxiv
0+阅读 · 2022年6月17日
Arxiv
0+阅读 · 2022年6月17日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员