Measuring the influence of users in social networks is key for numerous applications. A recently proposed influence metric, coined as $\psi$-score, allows to go beyond traditional centrality metrics, which only assess structural graph importance, by further incorporating the rich information provided by the posting and re-posting activity of users. The $\psi$-score is shown in fact to generalize PageRank for non-homogeneous node activity. Despite its significance, it scales poorly to large datasets; for a network of $N$ users it requires to solve $N$ linear systems of equations of size $N$. To address this problem, this work introduces a novel scalable algorithm for the fast approximation of $\psi$-score, named Power-$\psi$. The proposed algorithm is based on a novel equation indicating that it suffices to solve one system of equations of size $N$ to compute the $\psi$-score. Then, our algorithm exploits the fact that such system can be recursively and distributedly approximated to any desired error. This permits the $\psi$-score, summarizing both structural and behavioral information for the nodes, to run as fast as PageRank. We validate the effectiveness of the proposed algorithm on several real-world datasets.


翻译:衡量社会网络用户影响是许多应用的关键。 最近提出的影响度量(以美元计),以美元计值,可以超越传统的核心度量,而传统的核心度量则只能评估结构图的重要性,而传统的核心度量则只能通过进一步整合用户张贴和重新发送活动提供的丰富信息来评估结构图的重要性。 $/ 美元分数实际上显示将PageRank 概括为非同义节点活动。 尽管它的意义重大,但它比重小到大数据集; 对于一个由美元组成的用户网络,它需要解决规模为N$的方程式线性系统。 为了解决这个问题,这项工作引入了一种新的可缩放算法,用于快速接近$/ psi- count- count- power- power- $\ psi 。 拟议的算法基于一种新式的方程式,表明它足以解决一个规模为$N$的方程式来计算$- ppsi- count 。 然后,我们的算法利用了这样一个事实,即这种系统可以重复和分布性地接近于任何预期的错误。 将“ ” 和“ 数字” 用于快速校验算” 。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员