Analytics over social graphs allows to extract valuable knowledge and insights for many fields like community detection, fraud detection, and interest mining. In practice, decentralized social graphs frequently arise, where the social graph is not available to a single entity and is decentralized among a large number of users, each holding only a limited local view about the whole graph. Collecting the local views for analytics of decentralized social graphs raises critical privacy concerns, as they encode private information about the social interactions among individuals. In this paper, we design, implement, and evaluate PrivGED, a new system aimed at privacy-preserving analytics over decentralized social graphs. PrivGED focuses on the support for eigendecomposition, one popular and fundamental graph analytics task producing eigenvalues/eigenvectors over the adjacency matrix of a social graph and benefits various practical applications. PrivGED is built from a delicate synergy of insights on graph analytics, lightweight cryptography, and differential privacy, allowing users to securely contribute their local views on a decentralized social graph for a cloud-based eigendecomposition analytics service while gaining strong privacy protection. Extensive experiments over real-world social graph datasets demonstrate that PrivGED achieves accuracy comparable to the plaintext domain, with practically affordable performance superior to prior art.
翻译:对社会图的分析有助于为社区检测、欺诈检测和利息开采等许多领域获取宝贵的知识和洞察力。在实践中,分散化的社会图经常出现,社会图不为单一实体提供,社会图分散在大量用户中,每个用户对整张图只持有有限的当地观点。收集分散化社会图分析的当地观点,引起重要的隐私关切,因为它们将个人之间的社会互动的私人信息编码起来。在本文件中,我们设计、实施和评价普里夫GED,这是一个新系统,旨在对分散化的社会图进行隐私保存分析。普里夫GED侧重于支持eigendecomposition,一个流行和基本的图形分析分析任务,产生对全图的相近性矩阵和各种实际应用的好处。普里夫GED是建立在关于图形分析、轻度加密和差异性隐私的微妙的洞察力,使用户能够对分散化的社会图对分散化社会图提供当地观点,为基于云层的精度的精度提供高可比较性电子域域域域域域域数据,同时展示真实的图像,从而获得真实的超强的图像。