This paper introduces a novel social preference-aware decentralized safe control framework to address the responsibility allocation problem in multi-agent collision avoidance. Considering that agents do not necessarily cooperate in symmetric ways, this paper focuses on semi-cooperative behavior among heterogeneous agents with varying cooperation levels. Drawing upon the idea of Social Value Orientation (SVO) for quantifying the individual selfishness, we propose a novel concept of Responsibility-associated Social Value Orientation (R-SVO) to express the intended relative social implications between pairwise agents. This is used to redefine each agent's social preferences or personalities in terms of corresponding responsibility shares in contributing to the coordination scenario, such as semi-cooperative collision avoidance where all agents interact in an asymmetric way. By incorporating such relative social implications through proposed Local Pairwise Responsibility Weights, we develop a Responsibility-associated Control Barrier Function-based safe control framework for individual agents, and multi-agent collision avoidance is achieved with formally provable safety guarantees. Simulations are provided to demonstrate the effectiveness and efficiency of the proposed framework in several multi-agent navigation tasks, such as a position-swapping game, a self-driving car highway ramp merging scenario, and a circular position swapping game.
翻译:本文介绍了一个新的社会偏好-认识分散化安全控制框架,以解决多试剂避免碰撞的责任分配问题;考虑到代理人不一定以对称方式进行合作,本文件侧重于不同代理人之间不同合作程度的半合作行为;根据社会价值取向(SVO)概念,以量化个人自私,我们提出了一个与责任有关的社会价值取向(R-SVO)新概念,以表达对称代理人之间预期的相对社会影响;它用于重新界定每个代理人的社会偏好或个性,以相应的责任分担方式促进协调设想,如所有代理人以不对称方式相互作用的半合作性碰撞避免;通过拟议的地方对称责任责任责任责任取向(SVO)概念纳入这种相对的社会影响;我们为个别代理人制定一个责任相关控制障碍(SVO)安全控制框架,并通过正式的安全保障实现多代理人避免碰撞(R-SVO)概念;提供模拟,以表明拟议框架在多个代理人导航任务中的有效性和效率,例如定位游戏、自我驾驶汽车高速路路路交配换方案和循环换方案。