This paper describes a new method for representing embedding tables of graph neural networks (GNNs) more compactly via tensor-train (TT) decomposition. We consider the scenario where (a) the graph data that lack node features, thereby requiring the learning of embeddings during training; and (b) we wish to exploit GPU platforms, where smaller tables are needed to reduce host-to-GPU communication even for large-memory GPUs. The use of TT enables a compact parameterization of the embedding, rendering it small enough to fit entirely on modern GPUs even for massive graphs. When combined with judicious schemes for initialization and hierarchical graph partitioning, this approach can reduce the size of node embedding vectors by 1,659 times to 81,362 times on large publicly available benchmark datasets, achieving comparable or better accuracy and significant speedups on multi-GPU systems. In some cases, our model without explicit node features on input can even match the accuracy of models that use node features.
翻译:本文描述了一种通过高压列(TT)分解更紧凑地代表图形神经网络(GNNS)嵌入表格的新方法。我们考虑了以下两种情况:(a) 图表数据缺乏节点特征,因此需要在培训期间学习嵌入内容;以及(b) 我们希望利用GPU平台,即使对于大型模拟GPS来说,也需要较小的表格来减少主机到GPU的通信。TT的使用使得嵌入的参数能够实现紧凑化,使其变得足够小,甚至能够完全适应现代GPUs,甚至可以用于大量的图形。当与初始化和上层图形分割的明智计划相结合时,这一方法可以将大量公开的基准数据集中的节点嵌矢量减少1 659倍至81 362倍,从而实现可比较或更好的精确度,并在多式GPUP系统上大大加速。在某些情况下,我们没有输入明确节点特征的模型甚至可以匹配使用节点特征模型的精确度。