In many longitudinal settings, time-varying covariates may not be measured at the same time as responses and are often prone to measurement error. Naive last-observation-carried-forward methods incur estimation biases, and existing kernel-based methods suffer from slow convergence rates and large variations. To address these challenges, we propose a new functional calibration approach to efficiently learn longitudinal covariate processes based on sparse functional data with measurement error. Our approach, stemming from functional principal component analysis, calibrates the unobserved synchronized covariate values from the observed asynchronous and error-prone covariate values, and is broadly applicable to asynchronous longitudinal regression with time-invariant or time-varying coefficients. For regression with time-invariant coefficients, our estimator is asymptotically unbiased, root-n consistent, and asymptotically normal; for time-varying coefficient models, our estimator has the optimal varying coefficient model convergence rate with inflated asymptotic variance from the calibration. In both cases, our estimators present asymptotic properties superior to the existing methods. The feasibility and usability of the proposed methods are verified by simulations and an application to the Study of Women's Health Across the Nation, a large-scale multi-site longitudinal study on women's health during mid-life.


翻译:在许多纵深环境中,时间差异的共变点可能无法与应对措施同时测量,而且往往容易发生测量错误。最后观察和偏差的逆向方法产生估计偏差,而现有的内核方法存在缓慢趋同率和巨大差异。为了应对这些挑战,我们提议一种新的功能校准方法,以高效学习基于零位功能数据、测量误差的纵向共变进程。我们的方法来自功能性主要构件分析,它校准了观察到的不同步和易误差的共变值中未观测到的同步共变值,并且广泛适用于带有时间变化或时间变化系数的无同步长度回归。对于与时间差异系数的回归,我们的估测器是偏偏重、根一致和不中性正常;对于时间变化系数模型,我们的估测器有最佳的相异系数模型趋同率,与校正性差相膨胀。在这两种情况下,我们目前对女性健康状况进行大规模模拟研究时,其目前采用的是高性的方法。</s>

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
125+阅读 · 2023年1月29日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
41+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
谷歌足球游戏环境使用介绍
CreateAMind
31+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
125+阅读 · 2023年1月29日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
41+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员