Lua (Ierusalimschy et al., 1996) is a well-known scripting language, popular among many programmers, most notably in the gaming industry. Remarkably, the only data-structuring mechanism in Lua are associative arrays, called tables. With Lua 5.0, the reference implementation of Lua introduced hybrid tables to implement tables using both a hashmap and a dynamically growing array combined together: the values associated with integer keys are stored in the array part, when suitable, everything else is stored in the hashmap. All this is transparent to the user, who gets a unique simple interface to handle tables. In this paper we carry out a theoretical analysis of the performance of Lua's tables, by considering various worst-case and probabilistic scenarios. In particular, we uncover some problematic situations for the simple probabilistic model where we add a new key with some fixed probability $p>\frac12$ and delete a key with probability $1-p$: the cost of performing T such operations is proved to be $\Omega(T\log T)$ with high probability, where linear complexity is expected instead.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Lua 是一门轻量而快速的脚本语言,功能在高级动态语言中十分完备,对 C API、嵌入式开发以及线程安全的 VM 的支持,使其非常流行。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员