Recent accelerated MRI reconstruction models have used Deep Neural Networks (DNNs) to reconstruct relatively high-quality images from highly undersampled k-space data, enabling much faster MRI scanning. However, these techniques sometimes struggle to reconstruct sharp images that preserve fine detail while maintaining a natural appearance. In this work, we enhance the image quality by using a Conditional Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing (AGB) technique that automates the process of combining the adversarial and pixel-wise terms and streamlines hyperparameter tuning. In addition, we introduce a Densely Connected Iterative Network, which is an undersampled MRI reconstruction network that utilizes dense connections. In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques. To demonstrate the general nature of our method, it is further evaluated on a battery of image-to-image translation experiments, demonstrating an ability to recover from sub-optimal weighting in multi-term adversarial training.
翻译:最近加速的磁共振重建模型利用深神经网络(DNNs)重建高品质图像,从高度未加取样的K-空间数据中重建相对高质量的图像,从而能够更快地进行磁共振扫描。然而,这些技术有时难以重建精细保存的锐利图像,同时保持自然外观。在这项工作中,我们通过使用一种条件性瓦森斯坦(Wasserstein)基因反转网络来提高图像质量,同时使用一种新型的适应性渐进式平衡技术,将对抗性和像素性术语结合起来,并简化超光谱调控。此外,我们引入了一个密集连接的热电联网络,这是一个利用密集连接的磁共振重建网络。在磁共振中,我们的方法尽量减少了艺术品的质量,同时保持了一种能产生比其他技术更清晰图像的高质量重建。为了证明我们的方法的一般性质,我们进一步评估了成像成像成像转换实验的电池,展示了从多期对抗性对称训练中的亚最佳重量中恢复的能力。