Although pretrained language models (PLMs) can be prompted to perform a wide range of language tasks, it remains an open question how much this ability comes from generalizable linguistic representations versus more surface-level lexical patterns. To test this, we present a structured prompting approach that can be used to prompt for linguistic structure prediction tasks, allowing us to perform zero- and few-shot sequence tagging with autoregressive PLMs. We evaluate this approach on part-of-speech tagging, named entity recognition, and sentence chunking and demonstrate strong few-shot performance in all cases. We also find that, though the surface forms of the tags provide some signal, structured prompting can retrieve linguistic structure even with arbitrary labels, indicating that PLMs contain this knowledge in a general manner robust to label choice.
翻译:尽管预先培训的语言模型(PLMs)可以用来执行广泛的语言任务,但这一能力有多少来自通用语言表达形式,而更多的地平面词汇模式,仍是一个未决问题。为了测试这一点,我们提出了一个结构化的促进方法,可用于推动语言结构预测任务,使我们能够与自动递进式的PLMs进行零和少量的顺序标记。我们从部分语音标记、名称实体识别和句子中评估这一方法,并在所有情况下都显示强力的几发性能。 我们还发现,尽管这些标记的表面形式提供了某种信号,但结构化的提示可以检索语言结构,即使带有武断的标签,也表明PLMs在总体上包含了这种知识,能够对标签的选择起到强大的作用。