In many fields, the acquisition of advanced models depends on large datasets, making data storage and model training expensive. As a solution, dataset distillation can synthesize a small dataset that preserves most information of the original large dataset. The recently proposed dataset distillation method by matching network parameters has been proven effective for several datasets. However, the dimensions of network parameters are typically large. Furthermore, some parameters are difficult to match during the distillation process, degrading distillation performance. Based on this observation, this study proposes a novel dataset distillation method based on parameter pruning that solves the problem. The proposed method can synthesize more robust distilled datasets and improve distillation performance by pruning difficult-to-match parameters during the distillation process. Experimental results on three datasets show that the proposed method outperforms other state-of-the-art dataset distillation methods.
翻译:暂无翻译