The sphere formula states that in an arbitrary finite abstract simplicial complex, the sum of the Euler characteristic of unit spheres centered at even-dimensional simplices is equal to the sum of the Euler characteristic of unit spheres centered at odd-dimensional simplices. It follows that if a geometry has constant unit sphere Euler characteristic, like a manifold, then all its unit spheres have zero Euler characteristic or the space itself has zero Euler characteristic. Especially, odd-dimensional manifolds have zero Euler characteristic, a fact usually verified either in algebraic topology using Poincar\'e duality together with Riemann-Hurwitz then deriving it from the existence of a Morse function, using that the Morse indices of the function and its negative add up to zero in odd dimensions. Gauss Bonnet also shows that odd-dimensional Dehn-Sommerville spaces have zero Euler characteristic because they have constant zero curvature. Zero curvature phenomenons can be understood integral geometrically as index expectation or as Dehn-Sommerville relations.
翻译:球体公式表明,在一个任意的有限抽象模拟复合体中, 以等度安非他明为核心的单元球体的Euler特性总和等于以奇度安非他明为核心的单元球体的Euler特性的总和。 因此, 如果几何具有恒定的单元球体Euler特性, 像一个元体一样, 那么它的所有单元球体都具有零倍的特性, 或者空间本身都有零倍的特性。 特别是, 奇数的多元体有零倍的特性, 通常在代数表层表层学中, 与Riemann- Hurwitz 一起被证实的事实, 然后从Morse 函数的存在中得出, 函数的Morse 指数及其负数在奇数中增加到零。 Gaus Bonn- Sommerville 也表明, 奇数的Dehn- Sommerville 空间都有零 Eul 特性, 因为它们是恒度不变的零度的。 Zero 曲线现象可以被理解为整体的地对地测量学的预期或Dehn- Somerville关系。