We provide a simple and general solution to the fundamental open problem of inaccurate uncertainty quantification of Bayesian inference in misspecified or approximate models, and of generalized Bayesian posteriors more generally. While existing solutions are based on explicit Gaussian posterior approximations, or computationally onerous post-processing procedures, we demonstrate that correct uncertainty quantification can be achieved by substituting the usual posterior with an alternative posterior that conveys the same information. This solution applies to both likelihood-based and loss-based posteriors, and we formally demonstrate the reliable uncertainty quantification of this approach. The new approach is demonstrated through a range of examples, including generalized linear models, and doubly intractable models.
翻译:暂无翻译