Task-adaptive pre-training (TAPT) and Self-training (ST) have emerged as the major semi-supervised approaches to improve natural language understanding (NLU) tasks with massive amount of unlabeled data. However, it's unclear whether they learn similar representations or they can be effectively combined. In this paper, we show that TAPT and ST can be complementary with simple TFS protocol by following TAPT -> Finetuning -> Self-training (TFS) process. Experimental results show that TFS protocol can effectively utilize unlabeled data to achieve strong combined gains consistently across six datasets covering sentiment classification, paraphrase identification, natural language inference, named entity recognition and dialogue slot classification. We investigate various semi-supervised settings and consistently show that gains from TAPT and ST can be strongly additive by following TFS procedure. We hope that TFS could serve as an important semi-supervised baseline for future NLP studies.


翻译:任务调整前培训(TAPT)和自我培训(ST)是提高自然语言理解(NLU)任务的主要半监督方法,具有大量未贴标签的数据。然而,尚不清楚他们是否学会了类似的表述方式,还是可以有效地将其结合起来。在本文中,我们表明TAPT和ST可以通过采用TAPT -- > 微调 -- > 自我培训(TFS)程序来补充简单的TFS协议。实验结果显示,TFS协议可以有效地利用未贴标签的数据,在六个数据集之间实现强有力的综合收益,这六个数据集包括情绪分类、参数识别、自然语言推论、实体识别和对话时间档分类。我们调查了不同的半监督环境,并一致表明TAPT和ST的成果可以通过TFS程序得到强大的补充。我们希望TFS可以作为未来NLP研究的重要的半监督基线。

0
下载
关闭预览

相关内容

IEEE模糊系统会刊TFS(IEEE Transactions on Fuzzy Systems)是由IEEE所属神经网络联合会发起和创办的一种新出版物。刊登有关模糊系统的理论、设计和应用方面的高质量技术论文,特别重视工程系统和科学应用,同时刊登信息以及有关其所载文章的评论和反驳。 官网地址:http://dblp.uni-trier.de/db/journals/tfs/
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
123+阅读 · 2020年9月8日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
12+阅读 · 2019年2月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员