The prevalent convolutional neural network (CNN) based image denoising methods extract features of images to restore the clean ground truth, achieving high denoising accuracy. However, these methods may ignore the underlying distribution of clean images, inducing distortions or artifacts in denoising results. This paper proposes a new perspective to treat image denoising as a distribution learning and disentangling task. Since the noisy image distribution can be viewed as a joint distribution of clean images and noise, the denoised images can be obtained via manipulating the latent representations to the clean counterpart. This paper also provides a distribution learning based denoising framework. Following this framework, we present an invertible denoising network, FDN, without any assumptions on either clean or noise distributions, as well as a distribution disentanglement method. FDN learns the distribution of noisy images, which is different from the previous CNN based discriminative mapping. Experimental results demonstrate FDN's capacity to remove synthetic additive white Gaussian noise (AWGN) on both category-specific and remote sensing images. Furthermore, the performance of FDN surpasses that of previously published methods in real image denoising with fewer parameters and faster speed. Our code is available at: https://github.com/Yang-Liu1082/FDN.git.


翻译:盛行的共生神经网络(CNN)基于相通性神经网络(CNN)的图像分解方法提取图像特征,以恢复干净的地面真相,实现高的分解准确性;然而,这些方法可能会忽视清洁图像的基本分布,诱使扭曲或人工制品在去除结果中出现;本文件提出了将图像分解视为分发学习和分解任务的新视角;由于可以将噪音图像的分布视为清洁图像和噪音的联合传播,因此可以通过对清洁的对应方的隐性表达方式来获取被淡化的图像。本文还提供了一个基于分发学习的分解框架。在此框架之后,我们提出了一个不可撤销的分解网络,即FDN(FDN),没有关于清洁或噪音分布的任何假设,也没有关于分解方法。FDN(FDN)学习了噪音图像的分布,这与先前的CNCN基于歧视的绘图不同。实验结果表明,FDN(AWGN)有能力清除特定类别和遥感图像的合成添加性白高的噪音。此外,FDN(AN)的表现超过了我们以前公布图像的参数的更快速度:在实际的LDFD/DFDFDM(较慢)。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
已删除
将门创投
9+阅读 · 2019年11月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
相关资讯
已删除
将门创投
9+阅读 · 2019年11月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年6月29日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
9+阅读 · 2018年1月4日
Top
微信扫码咨询专知VIP会员