Deep neural networks (DNNs) have achieved significant success in image restoration tasks by directly learning a powerful non-linear mapping from corrupted images to their latent clean ones. However, there still exist two major limitations for these deep learning (DL)-based methods. Firstly, the noises contained in real corrupted images are very complex, usually neglected and largely under-estimated in most current methods. Secondly, existing DL methods are mostly trained on one pre-assumed degradation process for all of the training image pairs, such as the widely used bicubic downsampling assumption in the image super-resolution task, inevitably leading to poor generalization performance when the true degradation does not match with such assumed one. To address these issues, we propose a unified generative model for the image restoration, which elaborately configures the degradation process from the latent clean image to the observed corrupted one. Specifically, different from most of current methods, the pixel-wisely non-i.i.d. Gaussian distribution, being with more flexibility, is adopted in our method to fit the complex real noises. Furthermore, the method is built on the general image degradation process, making it capable of adapting diverse degradations under one single model. Besides, we design a variational inference algorithm to learn all parameters involved in the proposed model with explicit form of objective loss. Specifically, beyond traditional variational methodology, two DNNs are employed to parameterize the posteriori distributions, one to infer the distribution of the latent clean image, and another to infer the distribution of the image noise. Extensive experiments demonstrate the superiority of the proposed method on three classical image restoration tasks, including image denoising, image super-resolution and JPEG image deblocking.
翻译:深心神经网络(DNNS)通过直接学习从腐败图像到其潜在清洁图像的强大非线性绘图,在图像恢复任务中取得了显著的成功。然而,这些深层学习(DL)方法仍然存在两大局限性。首先,真实腐败图像中所含的噪音非常复杂,通常被忽视,在大多数当前方法中,这些噪音在很大程度上估计不足。第二,现有的DL方法大多在对所有培训图像配对的预估降解过程上进行了培训,例如,在图像超分辨率任务中广泛使用的双曲线下缩假设,在真实降解与假设不匹配时,不可避免地导致总体性表现不佳。此外,为了解决这些问题,我们提出了一个统一的图像恢复变异型模型,从隐性清洁图像到观察到的腐败。具体地说,与大多数现行方法不同的是,另一种顺理成非i.i.d. Gausian分布,随着灵活性的提高,在我们的方法中采用了一种复杂的真实图像的变异变式,在两种变式模型中,我们采用一种变式的变式的比喻。此外,在设计总体变法中,我们采用一种变式的变式的变制的变式方法,在总体变式的变式的变式中,在一般的变式图变式中,将整个的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式中,在了一种图像的变式中,在一种变式中,在一种变式的变式中,在了一种变式中,在一种变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式中,在一种变式中,在一种变式的变式的变式的变式的变制的变式中,在一种的变式中,在一种的变式中,在一种的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式中,在一种的变式中,在一种变式的变式的变式中,在一种变式的变式的变式的变式的变式的变式的变式的变式的变