Recent advances in image synthesis enables one to translate images by learning the mapping between a source domain and a target domain. Existing methods tend to learn the distributions by training a model on a variety of datasets, with results evaluated largely in a subjective manner. Relatively few works in this area, however, study the potential use of semantic image translation methods for image recognition tasks. In this paper, we explore the use of Single Image Texture Translation (SITT) for data augmentation. We first propose a lightweight model for translating texture to images based on a single input of source texture, allowing for fast training and testing. Based on SITT, we then explore the use of augmented data in long-tailed and few-shot image classification tasks. We find the proposed method is capable of translating input data into a target domain, leading to consistent improved image recognition performance. Finally, we examine how SITT and related image translation methods can provide a basis for a data-efficient, augmentation engineering approach to model training.
翻译:图像合成的最新进展使得人们能够通过学习源域和目标域之间的映射来翻译图像。 现有方法倾向于通过培训各种数据集模型来学习分布,其结果大多以主观方式评价。 然而,相对而言,在这一领域研究为图像识别任务使用语义图像翻译方法的可能性的作品较少。 在本文件中,我们探索了使用单一图像质素翻译(SITT)来增强数据。我们首先提出了一个将质素转换为图像的轻量级模型,该模型基于单一的源质素输入,允许快速培训和测试。然后,根据SITT,我们探索如何使用经强化的长尾和少发图像分类任务的数据。我们发现,拟议的方法能够将输入数据转化为目标领域,从而不断提高图像识别性能。最后,我们研究了SITT和相关图像翻译方法如何为模型培训提供数据高效、增强工程方法的基础。